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This paper treats the question of extraneous boundary conditions in fluid dynamic 
computing. Several simple problems in one-dimensional gas dynamics are solved using 
different boundary schemes. Some surprising differences in the accuracy of the schemes 
are shown. A simple analytical investigation is proposed as a criterion for accuracy of 
boundary schemes. 

1. INTRODUCTION 

In fluid-dynamic and magnetohydrodynamic codes, the question of extraneous 
boundary conditions (i.e., boundary conditions needed by the difference equations 
but not by the differential equations) often results in difficulties and inaccuracies. 
This paper presents a series of test calculations addressed to this question. 

The remarkable advances made in fluid computing during the past decade (see, 
e.g., [l-3]) corresponded to a vast increase in understanding of numerical analysis 
for pure initial-value problems. Knowledge of numerical stability, relation of 
stability to convergence, accuracy in terms of dissipation and dispersion of schemes, 
etc., have become by now rather welt understood. 

On the other hand, progress in understanding of mixed initial-boundary value 
problems is considerably slower. To begin with, convenient Fourier analysis 
(von Neumann criterion) is no longer applicable, and one must resort to energy 
methods or to operator-spectral methods (see, e.g., Richtmyer and Morton [4]). 
The latter methods, initially due to Godunov and Ryabenkii (see [4]), have been 
extended, improved, and applied with considerable vigor to numerous concrete 
cases by Kreiss and his coworkers [S-7]. Thus, only recently has our knowledge of 
the stabiiity of schemes for mixed initial-boundary value problems become approxi- 
mately comparable to that for pure initial-value problems; our knowledge of the 
accuracy and behavior of various schemes, involving dissipation and dispersion, 
etc., however, is still not well developed for these mixed initial-boundary value 
problems. 

Naturally, most interesting fluid-dynamic calculations are precisely for mixed 
initial-boundary value problems, rather than for pure initial-value problems. 
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We&known examples of such calculations include fiow past bodies, Bow in ducts3 
free surface flows, etc These practical calculations have been carried out ah this 
time> even though theoretical understanding ma:y have lagged- The treatment of 
boundary conditions in these calculations, however3 has generally been czr~ied 

out in an ad hoc and unsystematic fashion. A notable example is the so-caEe,d 
“reflection prmciple”, m which a variable, which may not be prescribed for the 
differential equation problem but which is needed for a difference scheme? fs 
reflected or extrapolated near the boundary with virtuahy no justification A. 
number of fhtid dynamicists, notably Cheng [9], Moretti [lO]2 and Roache in: :~is 
book [I 11: have objected to such procedures, and have proposed some remedies. Ofi 
the whole3 however, there is as yet no systematic study of such questions 

In pure mnial-value problems paralleling the theoretica: accuracy studies, .<he 
hterature is also full of test calculations evaiuating the relative merits of odious 
scheAmes under fan-ly simple and controlled test conditions (e.g.5 [l2% 13j). Such 
caiculations are valuable, not only m comparing with th,eoretical predictions of 
accuracy, but also m uncovering unexpected phenomena associated with 532 
numerical schemes For mixed initiaLboundary value problems in fluid dynam~cs~ 
even such test caiculations are rare in the hterature; and when they are done5 e.g~: 
More’& [IO], they usuahy are applied to relatively complex problems7 so that. 
comparison with exact results are spotty. 

The present paper represents one simple series of such test calculations. ‘The 
problem treated is the classical problem of one-dimensiona isentropic gas %7* in 
a tube. Various boundary conditions at the two ends represent varions physic24 

situations Corresponding to each such mathematical boundary sondititon a series 
of different finite-difference boundary conditions are applied and tested, and the 
results are compared with each other and with .&e exact solution. A similar st-~,Q~ 
applied to steady how of a supersonic gas in two-dimensions, was recently made 5y 
Abbett [14]. Since one-dimensional nnsteady gas .fIow and two-dimensional steady 
supersomc how are similar phenomena (i.e~? both represented by hyperbole 
differential equations), vve expect our conclusions to be compatible. They are indeed~ 
Reference [14] contains many more subcases than in the present paper, but in ou: 
more simplified cases, they collapse to anaIogus cases treated here. 

In Section Z3 we describe the three differem problems used to test variotizs 
boundary conditions. The finite-difference scheme and vario~us test bo~.ndar:g 
conditions are described m Section 3. In Section 4, we conclude by g$ng szne 
theoretical analysis to explain the behavior of the various boundary conditions as 
evidenced in the computed results of the previons section 

In this paper, we confine our attention to one-dimensional problems only, The 
extension to unsteady flows in higher dimensions mvolve htt!e conceptua! change? 
but possibly give some different and unexpected results, This wih be the sub&c: of 
a &cr study- 
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2. TEST PROBLEM FOR GAS DYNAMICS AND BOUNDARY CONDITIONS 

We shall use as a model the following class of problems: inviscid compressible 
gas initially at rest is placed in a tube with the following wall conditions: (A) Solid 
wall at left end, piston withdrawn at right end. (B) Solid wall at left end, constant 
pressure atmosphere at right end. (C) Piston at right end, no reflection at left end 
(i.e., a truncated infinite tube). In cases (A) and (C) the piston is drawn outward, 
and in case (B) the pressure of the atmosphere is lower than the pressure of the gas 
in the tube, so that in all cases, there are only expansion waves and no shocks. We 
do not wish to clutter the picture with additional difficulties of resolving shocks. 

The dilferential equations governing the problem, as well as the initial and 
boundary conditions for the three problems, are well known: 

where p is the density, ~1 the velocity, and p the pressure which equals Cp?‘, y being 
the ratio of the specific heats and C a constant depending on initial data. The speed 
of sound a is connected to the density by the well known relation a2 = 
yp/p = yCp~-l. The assumption of constant entropy is a consequence of the 
absence of shocks. The boundary conditions are shown in Fig. 1. 

As is well known, two pieces of data are given at t = 0, while only one piece is 
given on the boundaries (u or p or combination). The other variable, which is not 
prescribed on the boundary, comes out of the solution of the dilTerentia1 equation 
problem. If the difference scheme uses, for example, centered x-differences, then 
this additional variable is also needed at the boundary, and we may have to 
overspecify, or extrapolate, or reflect. This is the central question we want to 
investigate. Whatever we do naturally must first of all be stable, and additionally 
must be accurate. 

We transform the problem into Lagrange coordinates, so that the domain of 
interest becomes a rectangular strip. In so doing, we avoid yet another separate 
question at the boundary: how to deal with interpolating when grid points do not 
coincide with the boundary curve. This problem requires some consideration of its 
own, but should not interfere with our consideration of overspecification in this 
paper. 
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FIG. 1~ Boundary conditions for problems A. (wall-piston); B. (wall-atmosphre); sn< c 
(nonreflecting end-piston). 

In Lagrangian coordinates the equations and boundary conditions become 

where ( = s: P(x’) cIx’, V = p-l. The boundary conditions are given in Fig. i. 
The characteristics of (2) are dt/dt = &ap. ‘The Riemarm invariants which are 

constant along the characteristics, are the same as in Eulerian coordinates: being 

85 = ZI & 2a/(y - l), constant along dt/dt = &p, respectively~ 

In addition to the simplicity of the domain shape, the differential equations (2) 
also become simpler than the corresponding equations (1) in that the convective 
terms have disappeared. Our conclusions and results obtained for Lagrangian 
coordmates obviously also apply for Eulerian coordinates, but the convective term 
may add some complexities that should be considered with care. 
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3. FINITE DIFFERENCE SCHEME AND TEST BOUNDARY CONDITIONS 

The basic finite difference scheme used in the interior of the domain in all tests 
is the two-step Lax-Wendroff scheme [4]. Rewriting (2) as 

where F is the column vector (p-l, u), and G the column vector (-U, p), the scheme 
is just 

(4) 

i.e., the first half step is a Lax-Friedrichs dissipative scheme, and the second half- 
step is leap-frog scheme. Here, as is customary, t = nAt, .f = jAt, Fjn = 
F(jA[, nAt), etc., rz = 0, I, 2 ,... j = 0, I, 2 ,.... 

For constant coefficients, this scheme is identical to the more familiar form 

The reason for selecting the two-step Lax-Wendroff scheme for all the tests is that 
(1) it is second order accurate, and relatively low in dissipation; (2) it is single- 
leveled and easy to apply; and (3) it is widely used by fluid dynamicists and hence 
would be desirable to understand more fully. 

The boundary conditions to be tested here will be given in Table I. The descrip- 
tion is made for a solid wall at f = 0, where zl = 0 is prescribed and p is treated by 
the various schemes. Analogous prescriptions at the piston, and at a constant 
pressure end (problem B) where p is given and u is treated by the various schemes, 
are obvious, and need not be detailed here. 

We comment on these boundary conditions. Condition (1) was first proposed by 
Parter [15], in one of the earliest mathematical papers to deal with the question of 
overspecification at a boundary, in which he studied the Lax-Wendroff and Lax- 
Fsiedrichs schemes for the model equation Us + uz = 0. He concluded that if the 
overposed boundary value is uniformly bounded, the method would be stable and 
the solution will converge to the correct solution, except for a thin boundary layer 
at the boundary. However, for systems of equations, this boundary layer will 
propagate along the backward characteristics everywhere and destroy the accuracy 
of the solution [6]. This indeed occurs in all our calculations. 



TABLE I 

Boundary CondiGox 

(1) Overspccification p0 = constant. 

(2) First-order fxtrapolatiou f+ = pI . 

(3) Second-order extrapolation p0 = 2pI - p2 . 

(4) Local ctiarzcteristic 

(5) One-sided diEerence, first order space and rime 

(6) One-sided difference? second order space 

Condition (2J is standard extrapolation, and is very Imuch §ilililX to the xor: 
~commou reflection (in which an addition row of points is added beyond the &xmd- 
ary, denoted by say ( )-I , and pPI is set equal to pII. It iz eqGvalent to set?.irg 
8,GiE.x == 0 at the boundary. Condition (3) is higher order extrapolations and pc is 
obtained by a straight-line extrapoIation from p2 and pI. Condition 
along the characteristic at the boundary. In this sample problem, because a< the 
existence of the Riemann invariants> this procedure is very simple; in general? sonx 
algebric manipulations are required? but unlike the regular method of character&- 
t@ these manipulations only occur at the boundary. 

Conditions (5), (6) and (7) are all one-sided digerence equations for the :.ms~pecjIied 
quantity, in this case p or FJ, Condition (5) is first order accurate in space an& time, 
(6) is first order accurate in time and second-order accurate in space, (7) is seco~6.= 
order accurate in both space and time. CondititDn (7) is al,so similar to the box 
scheme used for the neutron transport equation- 
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One would have expected (2) to be rather poor, (3) to be better, (4) and (5) to be 
rather good, and (6) and (7) to be even better. Rather surprisingly, the calculated 
results as given in the next section show that this is not the case in general. All 
these schemes are stable when used in conjunction with the Lax-Wendroff scheme. 
When Eqs. (2) are first cast into diagonal (or characteristic) form, then Gustafsson 
et al. [6] have proved the stability for schemes (2), (3), (5) and (7). 

For problem B of the constant pressure atmosphere, we prescribep and thus p at 
the end t = L, and apply these various boundary treatments to U. 

For problem C of the nonreflecting end, we apply (2)-(7) for both p and U. In 
this case, the fact that we have a simple wave and thus straight characteristics at 
the nonreflecting boundary is used when we apply scheme (4). 

4. RESULTS 

The three test problems A9 B and C are run under these seven different boundary 
conditions. The parameters chosen are as follows. 

Initial density, p = 1. 
Initial velocity, u = 0. 
Initial sound speed, a = 1. 
Piston speed (A and C), U = 1. 
Atmospheric pressure, (B), p = l/l .4. 
Adiabatic exponent, y = 1.4. 
df = OS? AX = 1 for regular calculations. 
At = 0.25, AX = 0.5 for finer calculations. 
Tube length L = 10. 

Figures 2 and 3 show the velocity distribution at two ditIerent instants of time for 
problem A (piston-wall); only the portion near the piston is shown, since the end 
near the wall is rather uneventful and all schemes give the same results. The solid 
line is the exact solution. Figure 4 and 5 show the velocity distribution at the same 
two instants of time for problem B (atmospherewall). 

We can conclude quite clearly from those results that: (1) the higher order 
schemes, i.e., (3), (6) and (7), all have large oscihations, and are rather disappoint- 
ing; (2) the characteristic method (4) is the best overall; (3) the first-order one-sided 
derivative (5) is usable, though not as accurate as (4); (4) simple extrapolation (2) 
is amazingly good; this may be fortuitous, since the exact solution does indeed 
give a vanishing derivative on p or on 24 in these special cases. Condition (1) is indeed 
not even convergent, though stable as expected, so the results will not be shown. 
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FIG. 2 Velocity near the piston, at t = 10. (Solid line represents the exact solution? zm-kxm 
2-7 correspond to different boundary conditions in the Table.) 

These facts are seen even better in Figs. 6 and ‘?‘. Figure 6 gives the velocity at the 
point next to the piston in problem A plotted as a function of time, and Figure 7 
gives the velocity at the open end in problem ES plotted as a function of time- The 
oscillations of the higher order schemes (3), (6), and (7) are very apparmt. The 
characteristic scheme (4) is still seen to be the best, while simple extrapolation (2) 
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is much more sluggish than all the other schemes, suggesting a high degree of 
dissipation at the boundary. 

FIG. 3. Velocity near the piston at f = 25 (Problem A). 

,&Similar conclusions can be drawn from problem C, the nonreflecting end. 
Figure 8 shows the velocity and density at the nonreflecting end plotted as a 
function of time. We again can conclude the following. 

1. The characteristic method (4) is the best. 
2. Pure extrapolation (2) is still surprisingly good. This is all the more 

unexpected since in this problem, the exact solution does not give zero p or u 
derivatives at this end, although they are indeed not large. 

3. The schemes (3) and (5), i.e., linear extrapolation and first-order one-sided 
derivative, are both usable schemes, though not as good as the two schemes 
above. 
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FIG. 6. Velocity at one grid point from piston as a function of time, Problem A. 

FIG. 7. Velocity at open end as a function of time, Problem B. 
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FIG. %. Density (upper figure) and velocity (lower figtire) at the nonrefieckg end as f~x?kx~ 
of time, Problem C. 

4. For the higher-order schemes (6) and (7), a completely unexpected $e- 
nomenon occurs. Both the density and the velocity increase without bound. It is 
tempting to classify this behavior as a numerical instability, but it is not a usual 
mstability. In a numerical instability, the solution becomes ~nboundcd at a fixed 
t as we refine At. In our case, fixing t and refming At mcreases the accuracy and 
retards the blowing up of the solution. The solution blows up only as t mcreases It 
is a typical exponential growth caused by the accumulation of errors from multipIe 
boundary reflections (i.e., between E = 0 and E = IL), Gustafsson et ~1~ !5] have 
discussed this type of behavior- 

Jt may be questioned why we had not compared our extrapolation (2) lpkh the 
more popular reflection procedure, already alluded to earher. In fact? vve had done 
the calculations for the reflection case, but the results cannot bc considered con- 
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elusive. This is due to the fact that our difference scheme (the Lax-Wendroff 
scheme) requires three points at the old time level, hence when a row of points are 
introduced beyond the boundary, extrapolation must be carried out not only for 
the unspecified variable (say p at the piston), but also for the specified variable (U at 
the piston) to the added row, The latter is not a unique process, and thus may cloud 
the issue. If we reflect the density and straight-line extrapolate the velocity u 
(naturally through the given boundary value), then the reflection scheme gives 
results similar to (5). 

It has also been suggested that we compare our results with the staggered leap- 
frog scheme, which indeed avoids the boundary condition over-specification 
problem. Such a comparison, however, would not be fair. First of all, the finite- 
difference schemes are already different, and it is difficult, if at all possible, to 
attribute whatever differences in the results to either the finite-difference scheme or 
to the boundary condition. Second, the leap-frog scheme requires some manipula- 
tion to generate another row of initial data? so that the problems we discuss for the 
boundary conditions are encountered in the initial conditions. While the latter are 
indeed better known, we nevertheless feel a fair comparison cannot be made. 

5. THEORETICAL ANALYSIS OF SOME BOUNDARY CONDITIONS 

We make some theoretical explanation of the performance characteristics of 
some of the boundary conditions. As it stands, this analysis is still relatively 
rudimentary, but it does give us some insight into the nature of these various 
boundary conditions. Our analysis is in spirit akin to an investigation of the 
dissipation and dispersion properties of a finite difference scheme for a pure initial 
value problem. 

To be definite, we consider an ordinary one-dimensional wave equation with 
wave speed 1 (instead of, say, linearizing the Eqs. (2)), rewritten as a first order 
system: 

The characteristics are x - t = const, and x + t = const, with the corresponding 
Riemann invariants r = z! -1 v and s = u - v. Let a wave be incident on a solid 
wall (which is the only case we shall consider) from the right, and let the wal1 be at 
x = 0: 

where k is the frequency or wave number (here equal since c = 1) and v is the 



phase of ik itmident wave. Assume that up tih 8 = 0, a correctly reflected wave has 
been emitting from the wah toward the right: 

These two waves give the standard standing wave pattern satikfying gP = 9 at 
the bonndary: 

Obviously, we could eclually well treat other boundary conditions and less special 
imtial conditions, but this problem as specified is easier than most to har&z. 

We then ask What is the strength of the reflected wave ~(0~ At) = rO1 at the wa3 
at time At7 as given by the various schemes in Tab,- L b T before, for various values CL 
k and y? Again for simplicity? we consider ordy schemes ~ (51, and (6j, Le.? 
characteristic scheme, first-order and second.-order one side erivatives. We G.nd 
the following expressions, when the sshemes are apphed to u (zi = 0 alway<): 

Exact solution: 

Characteristic method (4): 

First-order one-sided (5): 

Second order one-sided (6): 

rql = A [co-s y - A sin y sin kLlx (2 - cos khj~~ L 

We plot these quantities rO1 versus kAx for various vakes of y in Figs. 9a and ?b~ 
Four values of y are represented 0°, 45’, '90'~ 13Ye (180"v X5', etc be!ime ymb 

metrically). Figure 9b corresponds to A = I,LY$ and Fig. 9a to h .= l/4* 
In a2 these cases, it is quite evident that the reflected wave m the characteristk 

) is generally weaker than that in the exact somtion that in the first-order 
one-sided scheme (5) is somewhat stronger than the exact solution and tha-t in the 
second-order scheme (6) is much stronger- This explains to a large extent :he 
oscihatory versus damped behavior of the solutions obtained by the use of the 
various boundary conditions. 

It would be desirable to further extend and develop this type of analysis to more 
general boundary schemes. 
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FIG. 9* Amplitudes of reflected waves: rO1 vs k&c for different 9. 

6. CONCLUSIONS 

It would have been desirable at the end of such a study to conclude which of the 
boundary conditions is optimal for practical use. This is unfortunately virtually 
impossible to do, any more than it is to conclude which is the optimal difference 
scheme to use for a given differential equation; the particular application deter- 
mines the choice of the boundary condition, as does the difference scheme. It would 
also have been desirable to conclude which type of boundary conditions lead to 
failure of the numerical solution. This can Iargely be answered by investigating the 
stability of the boundary condition with the difference scheme (see, e.g., [6]), and 
it is quite an involved process. All the schemes we considered in this study are 
stable and do not result in failure of the numerical solution, but their accuracy can 
still differ by a large amount. 



What we can conclude is that boundaries reflect the sohuions with amphfica;i~on 
or with damping. The latter kind gives in general better solutions in that they are 
less escihatoryy9 and that they do not blow up in m-oblems such as Problem CV but 
they are invariably more sluggish in response. The situation is again analogous to 
dissipation in finite-difference schemes, where as here the precise appGoz&on 
determines the choice of the scheme. 

Moreover, this study has suggested a procedure te predetermine this amphfica- 
tion or damping in a given boundary scheme. As expected. the procedure is quite 
a bit chunsier than just looking at dissipation or dispersion in a pure initial--value 
scheme. This is to be expected, as all treatment of mixed initial-boundary questions 
tend to be much more comphcated than treatment of corresponding purely nxitiai 
value questions. 

I. B. ALDER, S. FERNBACH, .mo M. ROTEXBERG (Eds.), “Methods in Computational Physics.*’ 
Vol. 3 (19641, Vol. 4 (1965): A4cademic Press, New York. 

2. C. K. CHU, Ed., Computational Fluid Dynamics,” AIAA Reprint Series Vol. 4, Amerxan 
Institute of -4eronautics and Astronautics, New York, 19% 

3. F. II. HARLOW, Ed., Computer Fluid Dynamics-Recent Advances?” AIAA Reprint TSeries, 
Vol. 15, -4merican Institute of -4eronautics and Astronautics> New York, 1973. 

4. EC. D. RICHTP+IYER AXD K. W. MORTON, “DiEerence Methods for Initiai \‘alue Problems’~ 
Wiley-Interscience, New York, 1967. 

5~ H. 0. KREIS, M&z. Camp. 22 (1968), 703. 
6. B. GUSTAFSSON, H. 0. KREISS, AT-II A. SUNDSTRO~I, &IQ&. Cmp. 26 (1972). 649, 
7. 13. O= KREISS AND J‘ OLIGER, -‘Methods for Approxin-&ate Solution of Time-Depende:lt. 

Problems,” CARP Publication Series No. i0, World Meteorological 0rgmization, I9’73. 
8. K~ V~ ROBEF.TS .&ND N. 0. WEISS? A4uz/z. Cmp. 20 (1966), ‘272. 

9. S. I. CHENG, Ph-vs. Fluids 12 (J96Q 11-34. 
IO. G. MORETiT, ISIS. FZuids 12 (1968), 11-13. 
11. P. I. ROACHE, “Computational Fluid Dynamics.” IIermosa Publishers -Albuquerque, 

New Mexico, I972. 
12. -4. F. EVEER~, J. Conzp. Phyx 2 (1968), 306= 
13. V. V. RUSANOV, Soviet Math. Dokl. 9 (1968), 771. 
I4. M. I. ABBETT$ *‘Boundary Condition Computation Procedure for Invisid Supersonic Flo~,~’ 

Aerotherm Corp. Report 71-41 (also NASA-CR-114446), I?71. 
3. S. V. Phmm, Numr. Moth. 4 (1962), 277. 


